3.6.13 \(\int \csc ^2(e+f x) \sqrt {d \csc (e+f x)} \, dx\) [513]

Optimal. Leaf size=74 \[ -\frac {2 \cos (e+f x) (d \csc (e+f x))^{3/2}}{3 d f}+\frac {2 \sqrt {d \csc (e+f x)} F\left (\left .\frac {1}{2} \left (e-\frac {\pi }{2}+f x\right )\right |2\right ) \sqrt {\sin (e+f x)}}{3 f} \]

[Out]

-2/3*cos(f*x+e)*(d*csc(f*x+e))^(3/2)/d/f-2/3*(sin(1/2*e+1/4*Pi+1/2*f*x)^2)^(1/2)/sin(1/2*e+1/4*Pi+1/2*f*x)*Ell
ipticF(cos(1/2*e+1/4*Pi+1/2*f*x),2^(1/2))*(d*csc(f*x+e))^(1/2)*sin(f*x+e)^(1/2)/f

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 74, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.190, Rules used = {16, 3853, 3856, 2720} \begin {gather*} \frac {2 \sqrt {\sin (e+f x)} F\left (\left .\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right )\right |2\right ) \sqrt {d \csc (e+f x)}}{3 f}-\frac {2 \cos (e+f x) (d \csc (e+f x))^{3/2}}{3 d f} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Csc[e + f*x]^2*Sqrt[d*Csc[e + f*x]],x]

[Out]

(-2*Cos[e + f*x]*(d*Csc[e + f*x])^(3/2))/(3*d*f) + (2*Sqrt[d*Csc[e + f*x]]*EllipticF[(e - Pi/2 + f*x)/2, 2]*Sq
rt[Sin[e + f*x]])/(3*f)

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rubi steps

\begin {align*} \int \csc ^2(e+f x) \sqrt {d \csc (e+f x)} \, dx &=\frac {\int (d \csc (e+f x))^{5/2} \, dx}{d^2}\\ &=-\frac {2 \cos (e+f x) (d \csc (e+f x))^{3/2}}{3 d f}+\frac {1}{3} \int \sqrt {d \csc (e+f x)} \, dx\\ &=-\frac {2 \cos (e+f x) (d \csc (e+f x))^{3/2}}{3 d f}+\frac {1}{3} \left (\sqrt {d \csc (e+f x)} \sqrt {\sin (e+f x)}\right ) \int \frac {1}{\sqrt {\sin (e+f x)}} \, dx\\ &=-\frac {2 \cos (e+f x) (d \csc (e+f x))^{3/2}}{3 d f}+\frac {2 \sqrt {d \csc (e+f x)} F\left (\left .\frac {1}{2} \left (e-\frac {\pi }{2}+f x\right )\right |2\right ) \sqrt {\sin (e+f x)}}{3 f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.07, size = 55, normalized size = 0.74 \begin {gather*} -\frac {2 (d \csc (e+f x))^{3/2} \left (\cos (e+f x)+F\left (\left .\frac {1}{4} (-2 e+\pi -2 f x)\right |2\right ) \sin ^{\frac {3}{2}}(e+f x)\right )}{3 d f} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Csc[e + f*x]^2*Sqrt[d*Csc[e + f*x]],x]

[Out]

(-2*(d*Csc[e + f*x])^(3/2)*(Cos[e + f*x] + EllipticF[(-2*e + Pi - 2*f*x)/4, 2]*Sin[e + f*x]^(3/2)))/(3*d*f)

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 0.12, size = 319, normalized size = 4.31

method result size
default \(\frac {\sqrt {\frac {d}{\sin \left (f x +e \right )}}\, \left (\cos \left (f x +e \right )+1\right )^{2} \left (-1+\cos \left (f x +e \right )\right )^{2} \left (i \sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {-\frac {i \left (-1+\cos \left (f x +e \right )\right )}{\sin \left (f x +e \right )}}\, \sqrt {-\frac {i \cos \left (f x +e \right )-i-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sin \left (f x +e \right ) \EllipticF \left (\sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}, \frac {\sqrt {2}}{2}\right ) \cos \left (f x +e \right )+i \sqrt {-\frac {i \left (-1+\cos \left (f x +e \right )\right )}{\sin \left (f x +e \right )}}\, \sin \left (f x +e \right ) \sqrt {-\frac {i \cos \left (f x +e \right )-i-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \EllipticF \left (\sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}, \frac {\sqrt {2}}{2}\right ) \sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}-\cos \left (f x +e \right ) \sqrt {2}\right ) \sqrt {2}}{3 f \sin \left (f x +e \right )^{5}}\) \(319\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(f*x+e)^2*(d*csc(f*x+e))^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/3/f*(d/sin(f*x+e))^(1/2)*(cos(f*x+e)+1)^2*(-1+cos(f*x+e))^2*(I*((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2
)*(-I*(-1+cos(f*x+e))/sin(f*x+e))^(1/2)*(-(I*cos(f*x+e)-I-sin(f*x+e))/sin(f*x+e))^(1/2)*sin(f*x+e)*EllipticF((
(I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2),1/2*2^(1/2))*cos(f*x+e)+I*sin(f*x+e)*(-I*(-1+cos(f*x+e))/sin(f*x
+e))^(1/2)*((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2)*(-(I*cos(f*x+e)-I-sin(f*x+e))/sin(f*x+e))^(1/2)*Elli
pticF(((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2),1/2*2^(1/2))-cos(f*x+e)*2^(1/2))/sin(f*x+e)^5*2^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^2*(d*csc(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(d*csc(f*x + e))*csc(f*x + e)^2, x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.10, size = 105, normalized size = 1.42 \begin {gather*} \frac {-i \, \sqrt {2 i \, d} \sin \left (f x + e\right ) {\rm weierstrassPInverse}\left (4, 0, \cos \left (f x + e\right ) + i \, \sin \left (f x + e\right )\right ) + i \, \sqrt {-2 i \, d} \sin \left (f x + e\right ) {\rm weierstrassPInverse}\left (4, 0, \cos \left (f x + e\right ) - i \, \sin \left (f x + e\right )\right ) - 2 \, \sqrt {\frac {d}{\sin \left (f x + e\right )}} \cos \left (f x + e\right )}{3 \, f \sin \left (f x + e\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^2*(d*csc(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

1/3*(-I*sqrt(2*I*d)*sin(f*x + e)*weierstrassPInverse(4, 0, cos(f*x + e) + I*sin(f*x + e)) + I*sqrt(-2*I*d)*sin
(f*x + e)*weierstrassPInverse(4, 0, cos(f*x + e) - I*sin(f*x + e)) - 2*sqrt(d/sin(f*x + e))*cos(f*x + e))/(f*s
in(f*x + e))

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \sqrt {d \csc {\left (e + f x \right )}} \csc ^{2}{\left (e + f x \right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)**2*(d*csc(f*x+e))**(1/2),x)

[Out]

Integral(sqrt(d*csc(e + f*x))*csc(e + f*x)**2, x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^2*(d*csc(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(d*csc(f*x + e))*csc(f*x + e)^2, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\sqrt {\frac {d}{\sin \left (e+f\,x\right )}}}{{\sin \left (e+f\,x\right )}^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d/sin(e + f*x))^(1/2)/sin(e + f*x)^2,x)

[Out]

int((d/sin(e + f*x))^(1/2)/sin(e + f*x)^2, x)

________________________________________________________________________________________